Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 145(3): 909-924, 2022 04 29.
Article in English | MEDLINE | ID: mdl-34605855

ABSTRACT

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Subject(s)
Epilepsy, Generalized , Sodium-Calcium Exchanger , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Glutamine/metabolism , Histidine/metabolism , Humans , Metabolome , Nitrogen/metabolism , Sodium-Calcium Exchanger/genetics
3.
Epilepsia Open ; 5(2): 314-324, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32537529

ABSTRACT

OBJECTIVE: Acute encephalopathy may occur in COVID-19-infected patients. We investigated whether medically indicated EEGs performed in acutely ill patients under investigation (PUIs) for COVID-19 report epileptiform abnormalities and whether these are more prevalent in COVID-19 positive than negative patients. METHODS: In this retrospective case series, adult COVID-19 inpatient PUIs underwent EEGs for acute encephalopathy and/or seizure-like events. PUIs had 8-channel headband EEGs (Ceribell; 20 COVID-19 positive, 6 COVID-19 negative); 2 more COVID-19 patients had routine EEGs. Overall, 26 Ceribell EEGs, 4 routine and 7 continuous EEG studies were reviewed. EEGs were interpreted by board-certified clinical neurophysiologists (n = 16). EEG findings were correlated with demographic data, clinical presentation and history, and medication usage. Fisher's exact test was used. RESULTS: We included 28 COVID-19 PUIs (30-83 years old), of whom 22 tested positive (63.6% males) and 6 tested negative (33.3% male). The most common indications for EEG, among COVID-19-positive vs COVID-19-negative patients, respectively, were new onset encephalopathy (68.2% vs 33.3%) and seizure-like events (14/22, 63.6%; 2/6, 33.3%), even among patients without prior history of seizures (11/17, 64.7%; 2/6, 33.3%). Sporadic epileptiform discharges (EDs) were present in 40.9% of COVID-19-positive and 16.7% of COVID-19-negative patients; frontal sharp waves were reported in 8/9 (88.9%) of COVID-19-positive patients with EDs and in 1/1 of COVID-19-negative patient with EDs. No electrographic seizures were captured, but 19/22 COVID-19-positive and 6/6 COVID-19-negative patients were given antiseizure medications and/or sedatives before the EEG. SIGNIFICANCE: This is the first preliminary report of EDs in the EEG of acutely ill COVID-19-positive patients with encephalopathy or suspected clinical seizures. EDs are relatively common in this cohort and typically appear as frontal sharp waves. Further studies are needed to confirm these findings and evaluate the potential direct or indirect effects of COVID-19 on activating epileptic activity.

4.
Drug Saf Case Rep ; 5(1): 22, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29752554

ABSTRACT

A 17-year-old male with history of neuromyelitis optica and seizures presented to the pulmonology clinic for evaluation of recurrent pneumonias. He had received rituximab for the past 6 years. Over the past 2 years, he experienced four episodes of pneumonia. In between these episodes, he would improve briefly but continued to have daily cough that was productive with yellow phlegm. He also had recurrent rhinitis and sinusitis despite multiple antibiotic courses. Review of chest X-rays revealed localized right middle lobe and right lower lobe infiltrates. An extensive workup was performed, including computed tomography (CT) of the chest and bronchoscopy to rule out congenital lesions of the right lung and foreign body aspiration. Chest CT showed right lower lobe bronchiectasis. Flexible bronchoscopy with bronchoalveolar lavage showed normal anatomy with thick mucus secretions in the right lower lobe. Immunologic evaluation was performed and revealed low levels of immunoglobulin (Ig)-G, IgM, and IgA, which had declined since initiation of rituximab. Lymphocyte subset testing was remarkable for low cluster of differentiation (CD)-19. He was referred to allergy and immunology and was initiated on immunoglobulin-replacement therapy (IGRT) for acquired hypogammaglobulinemia secondary to rituximab. There was marked clinical improvement after initiation of IGRT.

5.
J Child Neurol ; 33(1): 41-54, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28134012

ABSTRACT

Childhood epileptic encephalopathies are age-dependent disorders of the brain whose hallmarks include loss of neurologic function over time, abnormal electroencephalographic findings, and seizures. Ictal and interictal electrographic activity are conjointly thought to be at the root of the often devastating neuropsychological deterioration, which is specific to the maturing brain. The goals of treatment are not only to control seizures, but also to prevent or reverse neurologic loss of function. In general, time is of the essence in diagnosis, and experienced specialists should promptly design a treatment plan. Hormonal and immune therapies are at the forefront of treatment in many cases, with traditional antiepileptic drugs and surgery (when an identifiable lesion is present) playing a limited role. However, gold standard evidence for treatment of epileptic encephalopathies remains limited. Ongoing clinical and basic research may lead to better understanding of these catastrophic conditions and to better and more effective therapies.


Subject(s)
Epilepsy/therapy , Epilepsy/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...